Ex Vivo Perfusion-Simulation Measurements of Microbubbles as a Scattering Contrast Agent for Grating-Based X-Ray Dark-Field Imaging
نویسندگان
چکیده
In clinically established-absorption-based-biomedical x-ray imaging, contrast agents with high atomic numbers (e.g. iodine) are commonly used for contrast enhancement. The development of novel x-ray contrast modalities such as phase contrast and dark-field contrast opens up the possible use of alternative contrast media in x-ray imaging. We investigate using ultrasound contrast agents, which unlike iodine-based contrast agents can also be administered to patients with renal impairment and thyroid dysfunction, for application with a recently developed novel x-ray dark-field imaging modality. To produce contrast from these microbubble-based contrast agents, our method exploits ultra-small-angle coherent x-ray scattering. Such scattering dark-field x-ray images can be obtained with a grating-based x-ray imaging setup, together with refraction-based differential phase-contrast and the conventional attenuation contrast images. In this work we specifically show that ultrasound contrast agents based on microbubbles can be used to produce strongly enhanced dark-field contrast, with superior contrast-to-noise ratio compared to the attenuation signal. We also demonstrate that this method works well with an x-ray tube-based setup and that the relative contrast gain even increases when the pixel size is increased from tenths of microns to clinically compatible detector resolutions about up to a millimetre.
منابع مشابه
Hard-X-ray dark-field imaging using a grating interferometer.
Imaging with visible light today uses numerous contrast mechanisms, including bright- and dark-field contrast, phase-contrast schemes and confocal and fluorescence-based methods. X-ray imaging, on the other hand, has only recently seen the development of an analogous variety of contrast modalities. Although X-ray phase-contrast imaging could successfully be implemented at a relatively early sta...
متن کاملSignal Decomposition for X-ray Dark-Field Imaging
Grating-based X-ray dark-field imaging is a new imaging modality. It allows the visualization of structures at micrometer scale due to small-angle scattering of the X-ray beam. However, reading darkfield images is challenging as absorption and edge-diffraction effects also contribute to the dark-field signal, without adding diagnostic value. In this paper, we present a novel--and to our knowled...
متن کاملVarying Collimation for Dark-Field Extraction
Although x-ray imaging is widely used in biomedical applications, biological soft tissues have small density changes, leading to low contrast resolution for attenuation-based x-ray imaging. Over the past years, x-ray small-angle scattering was studied as a new contrast mechanism to enhance subtle structural variation within the soft tissue. In this paper, we present a detection method to extrac...
متن کاملImaging Liver Lesions Using Grating-Based Phase-Contrast Computed Tomography with Bi-Lateral Filter Post-Processing
X-ray phase-contrast imaging shows improved soft-tissue contrast compared to standard absorption-based X-ray imaging. Especially the grating-based method seems to be one promising candidate for clinical implementation due to its extendibility to standard laboratory X-ray sources. Therefore the purpose of our study was to evaluate the potential of grating-based phase-contrast computed tomography...
متن کاملReconstruction of scalar and vectorial components in X-ray dark-field tomography.
Grating-based X-ray dark-field imaging is a novel technique for obtaining image contrast for object structures at size scales below setup resolution. Such an approach appears particularly beneficial for medical imaging and nondestructive testing. It has already been shown that the dark-field signal depends on the direction of observation. However, up to now, algorithms for fully recovering the ...
متن کامل